(2% Hours) [Total Marks: 75]

N. B.: (1) All questions are compulsory.
(2) Make suitable assumptions wherever necessary and state the assumptions made.

(3) Answers to the same question must be written together.
(4) Numbers to the right indicate marks.

(5) Draw neat labeled diagrams wherever necessary.

(6) Use of Non-programmable calculators is allowed.

1.| Attempt any three of the following: 15
Describe a Microprocessor based system.
Microprocessor
I
| /o
[N Input / Output
ALU Register
| Array]’ T k
| System Bus >
it 1 [’
G . Memory
ontro
FIGURE 1.3
Microprocessor-Based System with Bus Architecture
Describe function of each
b.

Explain the terms:-
1) Word
ii) Byte
iii) Nibble
v) Machine language
V) Assembly language

Microprocessors recognize and operate in binary numbers. However, each microproce
sor has its own binary words, meanings, and language. The words are formed by con
bining a number of bits for a given machine. The word (or word length) is defined as tf
number of bits the microprocessor recognizes and processes at a time. The word leng
ranges from four bits for small, microprocessor-based systems to 64 bits for high-speg
large computers. Another term commonly used to express word length is byte. A byte
defined as a group of eight bits. For example, a 16-bit microprocessor has a word leng|
zqual to two bytes. The term nibble, which stands for a group of four bits, is found al
n popular computer magazines and books. A byte has two nibbles.

Each machine has its own set of instrections based on the design of its CPU or of i
microprocessor. To communicate with the computer, one must give instructions in bi
language (machine language). Because it is difficult for most people to write programs
sets of 0s and Is, computer manufacturers have devised English-like words to represent tf
binary instructions of a machine. Programmers can write programs, called assembly lai
guage programs, using these words. Because an assembly language is specific to a give
machine, programs written in assembly language are not transferable from one machine {
another. To circumvent this limitation, such general-purpose languages as BASIC an

.| Explain Tristate device logic and Buffer.
Tri-state Jogic devices have three states: logic 1, logic (), and high impedance. The term Tn-
State 1s a trademark of National Semiconductor and s used to repeesent three logic states.
A tri-state logic device has a third lin> called Enable, as shown in Figure 3.17. When this
line is activated, the tri-state device functions the same way as ordinary logic devices. When
the third line is disabled, the logic device goes into the high impedance state—as if it were
disconnected from the system. Ordinanly, current is required to drive a device n logic) and
logic | states. In the high impedance state, practically no current is drawn from the system.
B microcompater sysizms, periplerals ae coanecied in parallel between the ad-

dress bus and the data bes. However, becanse of the in-staee interfacing devices. penpl-
erals do not load the sysiem buses. The mcroproczssor commuenicaizs with tae device &
a tme by enzhling the in-stake line of the mterfacing device. Tri-stae bogic is crimcal fo
proper fimctioning of the microcompuie-

The buffer is a logic circuit that amplifies the current or power. It has one input line and
one output line (a simple buffer is shown in Figure 3.18a). The logic level of the output

FIGURE 3.17
Tri-State Inverters with Active High
and Active Low Enable Lines Enable
Enahle

Active High Active Low

FIGURE 3.18
A Buffer and a Tri-State Buffer D l\
Enable i
(a) (b) Active Low

is the same as that of the input; logic 1 ingut provides logic I output (the opposite of an |
mverter). The buffer is used primarily to increase the driving capability of a logic circuit. .
It 15 also known as a driver.

Figure 3.18b shows a tri-state buffer. When the Enable line is low, the circuit func- -
tioms as a buffer; otherwise it stays in the tigh impedance state. The buffer is commoanly -
used to increase the driving capability of tle data bus and the address bus.

.| Write a short note on classification of memory.

Prime Storage
Memory Memory

Secondary Backup
Storage Storage
Read/Write Read-Only Semi- Serial
Memory Memory random A:rla
R/WM ROM Access SECas
Erasable Permanent Disks
Memory Memory Fees
= Siatic = Dynamic = EPROM s Masked ROM = Floppy = Magnetic
R/WM R/WM = EE-PROM = PROM = Hard Tape
= Flash - - B
= Zero Power = Integrated Memory :(1:.? ’13?:: ot
= Non-volatile RAM roe
RAM

FIGURE 3.13
Memory Classification

Describe each in a single line.

Draw a neat label functional block diagram of 8085 microprocessor and explain the
flags of the flag register.

i >

AD~AD,
Address/Data Bus

’;
=]
¥ B
2 3
= .12 |12 |2 |l |= = =
El™ . il = =
Ng ugmp:‘:'_.iné 5 EL [?: .
< § AR L S5
SFsF F F |3 E,Eg é “-%
5 zal|le @lo 2P R
B g o o g
§-¢——§ [= T
g<:> -] 1wagag Hay
S _Jd5
Tl
] |} | &
F g = C =
= 2y 'DI_?'EEE g “ﬁi
| i 5usz 4.
s [= iz 141255 ¢ *-IE
o 2 e
=] —
= =
2 g K 2. " a
57, g<“_-> E i
“ B : § ~IE
THE CE— [| DS
I —— = g~ =
EE E —_—
.g -
N s o -3
. SH~12
;)
= 28 ~— 3
| + 3 Sn{
[P
<8 t4 &3
= i =
g & |
£ = i
- &= |

I'he Hags are affected by the arithmetic and logic operations i the ALU. In most of
these operations, the result is stored in the accumulator. Therefore, the flags generally re-
flect data conditions in the accumulator—with some exceptions. The descriptions and
conditions of the flags are as follows:

[S—Sign flag: After the execution of an arithmetic or logic operation, il bit D, of the
result (usually in the accumulator) is 1, the Sign flag is set. This flag is used with
signed numbers. In a given byte, if D5 is I, the number will be viewed as a negative
numbers; if it is 0, the number will be considered positive. In arithmetic operations with
signed numbers, bit D5 is reserved for indicating the sign, and the remaining seven bits
are used to represent the magnitude of a number. However, this flag is irrelevant for the
operations of unsigned numbers. Therefore, for unsigned numbers, even il bit D5 of a
result is 1 and the flag is set, it does not mean the result is negative. (See Appendix A2
for a discussion of signed numbers.)

[Z—Zero flag: The Zero flag is set if the ALU operation results in 0, and the flag is re-
set if the result is not 0. This flag is modified by the results in the accumulator as well
as in the other registers.

00 AC—Auxiliary Carry flag: In an arithmetic operation, when a carry is generated by
digit D5 and passed on to digit Dy, the AC flag is set. The Hag is used only internally
for BCD (binary-coded decimal) operations and is not available for the programmer to
change the sequence of a program with a jump instruction.

0 P—Parity flag: After an arithmetic or logical operation, if the result has an even num-
ber of 1s, the flag is set. If it has an odd number of 1s, the flag is reset. (For example,
the data byte 0000 0011 has even parity even if the magnitude of the number is odd.)

O CY—Carry flag: If an arithmetic operation results in a carry, the Carry flag is set; oth-
erwise it is reset. The Carry flag also serves as a borrow flag for subtraction.

The bit positions reserved for these flags in the flag register are as follows:

D, De Ds D D, D, D, Ba
[s T =z AC P =d

Among the five flags, the AC flag is used internally for BCD arithmetic; the in-
struction set does not include any conditional jump instructions based on the AC flag. Of
the remaining four flags, the Z and CY flags are those most commonly used.

Explain the timing diagram of The Memory Read Cycle.

FIGURE 4.12

Timing of the Memory Read Cycle Ty T Ta
As-A :X Memory Address

N) SV SR T S—

e T
y

= /]

MEMR .\\{

*Demultiplexed address bus

1. The microprocessor places a 16 bit address on the address bus which selects
only register. The lower order is seen on AD o- AD7. The higher order is
seenon A 15 - Ao

2. ;‘hle re(rg;gipiqg 8(1385 address lines (As-A,,) should be decoded to generate a Chip
elect (LS5) signal unique to that combination of address logic (ill i

\iiwe e gic (illustrated in Examples

3. The 8(_]85 provides two sig_nals——lOﬂTz[_ and RD—to indicate that it is a memory read
operallog. The I0/M and RD can be combined to generate the MEMR (Memory Read)
control signal that can be used to enable the output buffer by connecting to the mem-
ory signal RD.)

4. Figyre 4.12 also shc?ws that memory places the data byte from the addressed register
during T,, and that is read by the microprocessor before the end of T, g

.| Attempt any three of the following:

.| Explain the working of the OUT instruction in 8085 microprocessor.

Opcode Operand Description
OouT 8-bit Port This is a two-byte instruction with the hexadecimal opcode
Address: D3, and the second byte is the port address of an output
device.

This instruction transfers (copies) data from the accumula-
tor to the output device.

Typically, to display the contents of the accumulator at an output device (such as
LEDs) with the address, for example, O1H, the instruction will be written and stored in
memory as follows:

Memory Machine Memory
Address Code Mnemonics Contents
2050 D3 OUT OlH 22050 =11 101001 1|/=D3H
2051 01 ;2051 = (0000000 1|=0IH

(Note: The memory locations 2050H and 2051H are chosen here arbitrarily for the illus-
tration.)

If the output port with the address O1H is designed as an LED display, the in-
struction OUT will display the contents of the accumulator at the port. The second byte
of this OUT instruction can be any of the 256 combinations of eight bits, from 00H to
FFH. Therefore, the 8085 can communicate with 256 different output ports with device
addresses ranging from 00H to FFH. Similarly, the instruction IN can be used to accept
data from 256 different input ports. Now the question remains: How does one assign a
device address or a port number to an 1/O device from among 256 combinations? The
decision is arbitrary and somewhat dependent on available logic chips. To understand a
device address, it is necessary to examine how the microprocessor executes INOUT in-
structions.

OUT INSTRUCTION (8085)

In the first machine cycle, M, (Opcode Fetch, Figure 5.1), the 8085 places the high-order
memory address 20H on A,s—A; and the low-order address S0H on AD;—-ADg. At the
same time, ALE goes high and 10/M goes low. The ALE signal indicates the availability
of the address on AD,—-ADj, and it can be used to demultiplex the bus. The I0/M, being
low, indicates that it is a memory-related operation. At T, the microprocessor sends the
RD control signal, which is combined with I0/M (externally, see Chapter 4) to generate
the MEMR signal, and the processor fetches the instruction code D3 using the data bus.

When the 8085 decodes the machine code D3, it finds out that the instruction is a 2-byte
instruction and that it must read the second byte.

In the second machine cycle, M, (Memory Read), the 8085 places the next address,
2051H, on the address bus and gets the device address O1H via the data bus.

In the third machine cycle, M; (I/O Write), the 8085 places the device address 01H
on the low-order (AD;-AD,) as well as the high-order (A,s—Ag) address bus. The IO/M
signal goes high to indicate that it is an I/O operation. At T,, the accumulator contents are
placed on the data bus (AD;—ADy), followed by the control signal WR. By ANDing the
I0/M and WR signals, the [OW (see Figure 4.5) signal can be generated to enable an out-
put device.

Figure 5.1 shows the execution timing of the OUT instruction. The information nec-
essary for interfacing an output device is available during T, and T of the Mj; cycle. The
data byte to be displayed is on the data bus, the 8-bit device address is available on the
low-order as well as high-order address bus, and availability of the data byte is indicated
by the WR control signal. The availability of the device address on both segments of the
address bus is redundant information; in peripheral I/O, only one segment of the address
bus (low or high) is sufficient for interfacing. The data byte remains on the data bus only
for two T-states, then the processor goes on to execute the next instruction. Therefore, the
data byte must be latched now, before it is lost, using the device address and the control

signal (Section 5.13).
| I\I L_

},q

T

Accumulator
Contents

M; (110 Write)
T
i Port Address Olu

[
|
T

H

T,
1| Port
Address 01

Ty

1 Unspecified 1

[
I
|

T,

N

M, (Opcode Fetch)
T
0w

N]
b
Sav bt dod

o =

AjsAy .

Instruction QUT
M, (Memory Read)
T
0u
[
AD;-AD, O | -{ Opcode D3n }-}——u- 51u }—--{' 011 }-{

.| Explain the memory mapped I/O with STA 8000H stored at memory address
2050H.

M, (Opcode Fetch) M, (Memory Read) | M; (Memory Read) | M, (Memory Write)

T I T, | Ty [Tod T, I T

Ays—A% “ 20501 l I 20511 l 20521 I 8000H

R EIE?

Opcode Unspecified 2nd Byte 3rd Byte
AD,—ADq lsnu }--‘ 321 }-——-—{ 51H }-{ 001 }{ 521 }—{ 80K }-{ 00H }-41 Data '—

Accumulator

sl [\ . W s W b
o |\
R e i |

Fa
WR
MEMW Y ! r‘

*Demultiplexed Bus
In memory-mapped 1/O, the input and output devices are assigned and identified by 16-
bit addresses. To transfer data between the MPU and /O devices, memory-related in-
structions (such as LDA, STA, etc.)* and memory control signals (MEMR and MEMW)
are used. The microprocessor communicates with an I/O device as if it were one of the
memory locations. The memory-mapped I/O technique is similar in many ways to the pe-
ripheral 1/0 technique. To understand the similarities, it is necessary to review how a data
byte is transferred from the 8085 microprocessor to a memory location or vice versa. For
example, the following instruction will transfer the contents of the accumulator to the
memory location 8000H.

s

Memory Machine

Address Code Mnemonics Comments
2050 32 STA 8000H :Store contents of accumulator in mem-
. ory location 8000H
2051 00
2052 80

(Note: It is assumed here that the instruction is stored in memory locations 2050H, 51H,
and 52H.)

The STA is a three-byte instruction; the first byte is the opcode, and the second and

third bytes specify the memory address. However, the 16-bit address 8000H is entered in
the reverse order; the low-order byte 00 is stored in location 2051, followed by the high-
order address 80H (the reason for the reversed order will be explained in Section 5.6). In
this example, if an output device, instead of a memory register, is connected at this ad-
dress, the accumulator contents will be transferred to the output device. This is called the
memory-mapped I/O technique.
The execution of memory-related data transfer instructions is similar to the execution of
IN or OUT instructions, except that the memory-related instructions have 16-bit ad-
dresses. The microprocessor requires four machine cycles (13 T-states) to execute the in-
struction STA (Figure 5.12). The machine cycle M, for the STA instruction is similar to
the machine cycle Mj for the OUT instruction.

For example, to execute the instruction STA 8000H in the fourth machine cycle
(M,), the microprocessor places memory address 8000H on the entire address bus

(A;s—Ayg). The accumulator contents are sznt on the data bus, followed by the control sig-
nal Memory Write MEMW (active low).

The device selection has the following steps :-

1. Decode the address bus o generaie the device address pulse.
2. AND the control signal with the device address pulse to generate the device select (/O

select) pulse.

3. Use the device select pulse to enable the 1/0 port.

To interface a memory-mapped input port, we can use the instruction LDA 16-bit,
which reads data from an input port with the 16-bit address and places the data in the ac-
cumulator. The instruction has four machine cycles; only the fourth machine cycle differs
from M, in Figure 5.12. The control signal will be RD rather than WR, and data flow

from the input port to the microprocessor.

List and explain the various data transfer instruction.

Opcode Operand
MOV Rd,Rs*

MVI R,8-bit*

ouT 8-bit port address
IN 8-bit port address

Description

Move

[0 This is a 1-byte instruction

[0 Copies data from source register Rs to destina-
tion register Rd

Move Immediate

[0 This is a 2-byte instruction

[0 Loads the 8 bits of the second byte into the
register specified

Output to Port

[0 This is a 2-byte instruction

O Sends (copies) the contents of the accumulator
(A) to the output port specified in the second
byte

Input from Port

O This is a 2-byte instruction

0O Accepts (reads) data from the input port speci-
fied in the second byte, and loads into the ac-
enmnlator

.| What is a instruction , instruction word size and their types based on size ?

An instruction is a command to the microprocessor to perform a given task on specified data.
Each instruction has two parts: one is the task to be performed, called the operation code (op-
code), and the second is the data to be operated on, called the operand. The operand (or data)
can be specified in various ways. It may include 8-bit (or 16-bit) data, an internal register, a
memory location, or an 8-bit (or 16-bit) address. In some instructions, the operand is implicit.

2.31 Instruction Woxd Size

The 8085 instruction set is classified into the following three groups according to word
size or byte size.

In the 8085, “byte” and “word” are synonymous because it is an 8-bit microproces-
sor. However, instructions are commonly referred to in terms of bytes rather than words.

1. 1-byte instructions
2. 2-byte instructions
3. 3-byte instructions

ONE-BYTE INSTRUCTIONS
A l-byte instruction includes the opcode and the operand in the same byte. For example:

Task Opcode Operand® Binary Code Hex Code

Copy the contents of MOV C,A 0100 1111 4FH
the accumulator in
register C.

Add the contents of ADD B 1000 0000 80H
register B to the
contents of the ac-
cumulator.

Invert (complement) CMA 0010 1111 2FH
each bit in the ac-
cumulator.

These instructions are l-byte instructions performing three different tasks. In the
first instruction, both operand registers are specified. In the second instruction, the
operand B is specified and the accumulator is assumed. Similarly, in the third instruction,
the accumulator is assumed to be the implicit operand. These instructions are stored in 8-
bit binary format in memory; each requires one memory location.

TWO-BYTE INSTRUCTIONS

In a 2-byte instruction, the first byte specifies the operation code and the second byte
specifies the operand. For example:

. Hex
Task Opcode Operand Binary Code Code
Load an 8-bit MVI A,32H 0011 1110 3E First Byte
data byte 0011 0010 32 Second Byte
in the ac-
cumulator.
Load an 8-bit MVI B,FF2H 0000 0110 06 First Byte
data byte in 1111 0010 F2 Second Byte
register B.

These instructions would require two memory locations each to store the binary codes.
The data bytes 32H and F2H are selected arbitrarily as examples.

THREE-BYTE INSTRUCTIONS

In a 3-byte instruction, the first byte specifies the opcode, and the following (two bytes
specify the 16-bit address. Note that the second byte is the low-order address and the third
byte is the high-order address. For example:

Binary Hex

Task Opcode Operand Code Code*

Load contents LDA 2050H 0011 1010 3A First Byte
ol memory 0101 0000 50 Second Byte
2050H into A, 0010 0000 20 Third Byte

Transfer the JMP 2085H [T100 0011 | C3 First Byte
program 1000 0101 85 Second Byte
sequence to 0010 0000 20 Third Byte
memory location
2085H.

Explain the following instruction
I)ADI : Add Immediate Data to Accumulator \

Example The accumulator contains 4AH. Add the data byte 59H to the contents of the

accumulator.

Instruction: ADI 59H Hex Code: C6 59

Addition:

(A) : 4AH=0100 1010
+

(Data) : S9H=0 101 1 001

ATH=S10*1"'0' '0%0=1 1

Flags: S=1,Z=0,AC=1
P=1,CY=0
i1) JC : Jump on Carry
Example JC 2050 transfers control to instruction stored at 2050H when the
carry flag is set to 1

1) XRA : EX-OX the content of the Register with accumulator
Example Assume the conten:s of the accumulator are 77H and of register D are 56}

Exclusive OR the contents of the register D with the accumulator.

Instruction: XRA D Hexz Code: AA
(A:77TH=0111 0111
(D:56H=0101 0110
Exclusive OR: 0010 O 0 01
Flags: S=0,Z=0,P=

CY=0,AC=0
iv) ORI : OR Immediate data to Accumulator

Example Assume the accumulator has data byte O3H and register C holds byte 81 H.
Combine the bits of register C with the accumulator bits.

Instruction: ORA C Hex Code: Bl

Register contents Register contents

before instruction Logical OR after instruction

SZ AC P CY
Al 03 l XX |F 03H=0000 0011 A[83 [1,0, 0, 0, 0] F
B[XX| 81 |C 8H=1000 0001 B[XX _ 81 €
8H=1000 00 1 I
S=1,Z=0,P=0
Flags: CY =0, AC=0

V) JNZ : Jump on no Zero
Example JNC 2050 transfers control to instruction stored at 2050H when the
ZERO flag is set to 0

Write an assembly program for 8085 microprocessor to add the content of CO30H
and CO31H . Store the sum in C040H and carry at CO41H.
MVI A,00H
MVI B,00H
MVI C,00H
LDA CO030H
MOV B,A
LDA C031
ADD B
JNC HERE
INR C
HERE: STA C040
MOV A,C
STA C041
HLT

.| Attempt any three of the following:

15

.| Write an assembly program for 8085 microprocessor to transfer the contents of 10
memory location from CO30H- CO39H to C040H - CO41H.
MVI C, 0AH
LXI H, CO30H
LXI D, CO40H
HERE: MOV AM
STAX D
INXH
INXD
DCR C
JNZ HERE
HLT

.| Explain the various Rotate Instruction for 8085 microprocessor
| RLC: Rotate Accumulator Left

| RAL: Rotate Accumulator Left Through Carry

I RRC: Rotate Accumulator Right

| RAR: Rotate Accumulator Right Through Carry

Example Rotate the contents of the accumulator through Carry, assuming the accumu-
lator has A7H and the Carry flag is reset.

Instruction: RAL Hex Code: 17
Y
Accumulator content D; Dg Ds Dy D3 D D, Dg
before instruction [T Jo J1 ToJ o] 1] 1] 1]
GY:
(1]
Accumulator contents [() |I |0 | 0 | 1 | I|]| m

after instruction
Example :rotate the contents of the accumulator right, if it contain AFH and the

carry flag is reset to 0
Instruction: RRC Hex Code: OF

CYy
(0]
Accumulator contents D, Dg D; D; Dy D, D;, Dy
before instruction |_I o J1 T ol of 1] 1] 1)
X
(1]
Accumulator contents (1 |1 [o [1To] of 1] 1

after instruction

Example Rotate the contents of the accumulator assuming it contains A7H and the
Carry flag is reset to 0.

Instruction: RAR Hex Code: 1 F
| B
[0]
Accumulator contents D, Dg _Ige. D, D; D, D, Dy
before instruction 1 0 I JoJ o] 1] 1 1
CY
(1]
Accumulator contents [o T1 Jo [1] o] (][_ L] l_]

after instruction

Calculate the time delay for the 8085-based Microcomputer with 2 MHz clock
frequency.

Label | Mnemonics Operand T cycle
MVI C,FFH 7
LOOP: | DCR C 4
INZ LOOP 10/7

Clock frequency of the system f = 2 MHz
Clock period T= /= 1/2x 10° =05 ps
Time to execute MVI = 7 T-states x 0.5
=35 us
In Figure 8.2, register C is loaded with the count FFH (255,5) by the instruction
MVI, which is executed once and takes seven T-states. The next two instructions, DCR

and JNZ, form a loop with a total of 14 (4 + 10) T-states. The loop is repeated 255 times
until register C = 0.

The time delay in the loop T, with 2 MHz clock frequency is calculated as

TL = (T x Loop T-states x N10)

where T, = Time delay in the loop
T = System clock period
N,¢ = Equivalent decimal number of the hexadecimal count loaded in the delay

Ty = (0.5 x 107° x 14 x 255)
= 1785 ps
= 1.8 ms

The T-states for INZ instruction are shown as 10/7. This can be interpreted as fol-
lows: The 8085 microprocessor requires ten T-states to execute a conditional Jump in-
struction when it jumps or changes the sequence of the program and seven T-states when
the program falls through the loop (goes to the instruction following the JNZ). In Figure
8.2, the loop is executed 255 times; in the last cycle, the INZ instruction will be executed
in seven T-states. This difference can be accounted for in the delay calculation by sub-
tracting the execution time of three states. Therefore, the adjusted loop delay is

Tpa =Ty — (3 T-states x Clock period)
= 1785.0 pus — 1.5 us = 1783.5 us

Now the total delay must take into account the execution time of the instructions
outside the loop. In the above example, we have only one instruction (MVI C) outside the
loop. Therefore, the total delay is

Time to execute instructions N Time to execute

Total Delay = . g ,
outside loop loop instructions
TD = TO + TL;‘\
=(7x0.5 pus) + 1783.5 ps = 1787 us
=~ 1.8 ms

The difference between the loop delay Ty and these calculations is only 2 pis and can be
ignored in most instances.

The time delay can be varied by changing the count FFH; however, to increase the
time delay beyond 1.8 ms in a 2 MHz microcomputer system, a register pair or a loop
within a loop technique should be used.

.| Draw and explain a flowchart for a zero to nine counter.

Comments
and Flowcharxt

C o D

) —

l Initialize Counter _I
s]

| Display Output
v

I Load Delay Register

Delay Register
= Set Flags to

= Decrement
Check Delay Count

Register

.| What is a stack ? What are the two operations on the stack?

The stack in an 8085 microcomputer system can be described as a set of memory loca-
tions in the R/W memory, specified by a programmer in a main program. These memory
locations are used to store binary information (bytes) temporarily during the execution of
a program.

The beginning of the stack is defined in the program by using the instruction
LXI SP, which loads a 16-bit memory address in the stack pointer register of the micro-
processor. Once the stack location is defined, storing of data bytes begins at the memory
address that is one less than the address in the stack pointer register. For example, if the
stack pointer register is loaded with the memory address 2099H (LXI SP,2099H), the
storing of data bytes begins at 2098H and continues in reversed numerical order (de-
creasing memory addresses such as 2098H, 2097H, etc.). Therefore, as a general practice,
the stack is initialized at the highest available memory location to prevent the program
from being destroyed by the stack information. The size of the stack is limited only by
the available memory.

Data bytes in the register pairs of the microprocessor can be stored on the stack
(two at a time) in reverse order (decreasing memory address) by using the instruction
PUSH. Data bytes can be transferred from the stack to respective registers by using the
instruction POP. The stack pointer register tracks the storage and retrieval of the informa-
tion. Because two data bytes are being stored at a time, the 16-bit memory address in the
stack pointer register is decremented by two; when data bytes are retrieved, the address is
incremented by two. An address in the stack pointer register indicates that the next two
memory locations (in descending numerical order) can be used for storage.

POP: Pop off Stack to Register Pair

Opcode Operand Bytes M-Cycles T-States Hex Code
POP Reg. pair 1 3 10 Reg. Hex
B €l
D DI
H El
PSW Fl

Description The contents of the memory location pointed out by the stack pointer reg-
ister are copied to the low-order register (such as C, E, L, and flags) of the operand. The
stack pointer is incremented by 1 and the contents of that memory location are copied to
the high-order register (B, D, H, A) of the operand. The stack pointer register is again in-
cremented by 1.

Flags No flags are modified.

Example Assume the stack pointer register contains 2090H, data byte F5 is stored in
memory location 2090H, and data byte O1H is stored in location 209 1H. Transfer the con-
tents of the stack to register pair H and L.

Instruction: POP H Hex Code: EI

Register contents Stack Register contents
before instruction contents after instruction
H| XX | XX |L 2090 | F5| H| ol | F5 |L

SP 2090 2091 Sp 2092

2092 | |

PUSH: Push Register Pair onto Stack

Opcode Operand Bytes M-Cycles T-States Hex Code
PUSH Reg. pair | 3 12 Reg. Hex
B C5
D D5
H ES
PSW F5

Description The contents of the register pair designated in the operand are copied into
the stack in the following sequence. The stack pointer register is decremented and the
contents of the high-order register (B, D, H, A) are copied into that location. The stack
pointer register is decremented again and the contents of the low-order register (C, E, L,
flags) are copied to that location.

Flags No flags are modified.

Example Assume the stack pointer register contains 2099H, register B contains 32H
and register C contains 57H. Save the contents of the BC register pair on the stack.

Instruction: PUSH B Hex Code: C5

Register contents Stack contents Register contents

before instruction after instruction after instruction

B C 2097 [57 B @
2098 | 32

OC
sp 2099 | XX sp [2097

Explain the execution of a CALL instruction for 8085 microprocessor and its effect
on the stack pointer and program counter.
The 8085 microprocessor has (wo instructions to implement subroutines: CALL

(call a subroutine), and RET (return to main program from a subroutine). The CALL in-
struction is used in the main program to call a subroutine, and the RET instruction is
used at the end of the subroutine to return to the main program. When a subroutine is
called, the contents of the program counter, which is the address of the instruction fol-
lowing the CALL instruction, is stored on the stack and the program execution is trans-
ferred to the subroutine address. When the RET instruction is executed at the end of the
subroutine, the memory address stored on the stack is retrieved, and the sequence of ex-
ecution is resumed in the main program. This sequence of events is illustrated in
Example 9.3.

INSTRUCTIONS
Opcode Operand
CALL 16-bit memory Call Subroutine Unconditionally
address of a [J This is a 3-byte instruction that transfers the program
subroutine sequence to a subroutine address

[0 Saves the contents of the program counter (the ad-
dress of the next instruction) on the stack

0 Decrements the stack pointer register by two

[0 Jumps unconditionally to the memory location speci-
fied by the second and third bytes. The second
byte specifies a line number and the third byte
specifies a page number

O This instruction is accompanied by a return instruc-
tion in the subroutine

CALL EXECUTION
Memory Machine

Address Code Mnemonics Comments
2040 CD CALL 2070H ;Call subroutine located at the memory
20441 70 - location 2070H
2042 20

2043 NEXT INSTRUCTION

Mem Cod
Instruction: CALL 2070H Ad{lr:g (;I)c
Stack 2040 CD
Machine Poii:::ter Address | Program Data Internal 2041 70
Cycles (SP) Bus Counter Bus Registers
" | 2400 | AB) |PCHYPCL)| (DB) | (W)(2) oL
M, .
opeode | ZFE 1 2040 20 41 s L]
Fetch (SP-1) Opcode
M 70
Memory 2041 2042 |ooerandal— 70
Read perG
M, 20
Memo 23FF 2042 20 43 -
I::al dry N Operand > 20
M, - W
Memory 23FE 23FF | 20 43 20
Write [(SP-2) L1 (PCH)
M; \ Y
Memory 23FE 23FE 20 43 43 (20)(70)
Write L1 (PCL)
M,
Opcode Fetch 2070 > 2071 (2070)
of Next
Instruction (W)2)+ — (W)(Z)
Program Counter Stack Stack Stack Pointer
Contents Memory Register
. : 2400
Call: 2041
2042 23FF
Next: 2043 23FE
Instruction
\' .
43 | 23FE
20 | 23FF
XX | 2400

.| Attempt any three of the following:

15

Write an assembly program for 8085 microprocessor to convert 72scp to its binary
equivalent.

MVI A, 72H

MOV B,A

ANI OFH

MOV C,A

MOV A,B

ANI FOH

MOV D,A
XRA A
MVI E,0AH
HERE : ADD E
DCR D
JNZ HERE
ADD C
STA C040H
HLT

Explain the following instruction :-

1) LHLD and SHLD
LHLD: Load H and L Registers Direct

Opcode Operand Bytes M-Cycles T-States Hex Code

LHLD 16-bit 3 5 16 2A
address

Description The instruction copies the contents of the memory location pointed out by
the 16-bit address in register L. and copies the contents of the next memory location in
register H. The contents of source memory locations are not altered.

Flags No flags are affected.

Example Assume memory location 2050H contains 90H and 2051H contains O1H.
Transfer memory contents to registers HL.

Instruction: LHLD 2050H Hex Code: 2A 50 20

Memory contents Register contents
before instruction after instruction
2050 90
2051 01

H 01 90 L
SHLD: Store H and L Registers Direct

Opcode Operand Bytes M-Cycles T-States Hex Code

SHLD 16-bit 3 5 16 22
address

Description The contents of register L are stored in the memory location specified by
the 16-bit address in the operand, and the contents of H register are stored in the next
memory location by incrementing the operand. The contents of registers HL are not al-
tered. This is a 3-byte instruction; the second byte specifies the low-order address and the
third byte specifies the high-order address.

Flags No flags are affected.

Example Assume the H and L registers contain O1H and FFH, respectively. Store the
contents at memory locations 2050H and 2051H.

Instruction: SHLD 2050H Hex Code: 22 50 20

Register contents Memory and register contents
before instruction after instruction
H[OI]FF| L 2050 | FF H|[O01] FF| L

2051 [OI]

i) XCHG and XTHL
XCHG : Exchange the content of the HL register Pair with DE Register
Pair respectively
XTHL : Exchange the H and L with the top of the Stack

Example The contents of various registers and stack locations are as shown:

Stacks
H|A2 | 57| L 2095 | 38
SP| 2095 2096 | 67

Illustrate the contents of these registers after instruction XTHL.

Register contents

after XTHL Stacks
H|67 | 38| L 2095 | 57
sp| 2095 2096 | A2

ii) SBB

02
02
01

SBB: Subtract Source and Borrow from Accumulator

Opcode Operand Bytes M-Cycles T-States Hex Code
SBB Reg. | 1 4 Reg. Hex
Mem. 1 2 7 B 98
C 99
D 9A
E 9B
H L @
L 9D
M 9E
A 9F

Description The contents of the operand (register or memory) and the Borrow flag are
subtracted from the contents of the accumulator and the results are placed in the accu-
mulator. The contents of the operand are not altered; however, the previous Borrow flag
1S reset.

Example Assume the accumulator contains 37H, register B contains 3FH, and the
Borrow flag is already set by the previous operation. Subtract the contents of B with the
borrow from the accumulator.

Instruction: SBB B Hex Code: 98
The subtraction is performed in 2’s complement; however, the borrow needs to be added
first to the subtrahend:

(B): 3F
Borrow: + |
Subtrahend: 40H=0100 0000
2’s complementof 40H=1 100 0000
(A) =0011 O111
0l -1 Il ldal=FH
Complement Carry: 70 1900 R R R 0 Vo P I

The Borrow flag is set to indicate the result is in 2’s complement. The previous Borrow
flag is reset during the subtraction.

Explain the following :-
1) Cross Assembler

PCs and their compatibles are widely used on college campuses, and we can use PCs to

develop (assemble) 8085 assembly language programs by using a program called Cross-

Assembler. PCs are designed around Intel processors that have different mnemonics from

those of the 8085; thus, we need a program that can translate the 8085 mnemonics, but

operate under the PC microprocessor. Such a program is called a cross-assembler. For

example, the 8085 cross-assembler from 2500 AD Software Inc. has two programs: one

is an assembler named X8085 and the other is a linker with the file name LINK. After as-

sembling a program, the Hex file (described later) can be directly transferred to R/W

memory of your 8085 single-board microcomputer by using a download program. Thus,

programs and/or hardware-related laboratory experiments can be easily performed.
Writing and assembling a program using a cross-assembler such as X8085 on the

PC is described as follows.

Call an editor program and create a source file in assembly language

Call a Cross Assembler to Assemble the source file

Call a link program to generate the executable file

Execute the program

1) Loader

bl S

03
02

LOADER

The Loader (or Linker) is a program that takes the Object file generated by the Assembl
program and generates a file in binary code called the COM filke or the EXE file. T}
COM (or EXE) file is the only executable file—i.e.. the only file that can be executed |
the microcomputer. To execute the program, the COM file is called under the control
the operating system and executed. In different assemblers, the COM file may be label

by other names.

What is the function performed by a debugger?
DEBUGGER
The Debugger is a program that allows the user to test and debug the Object file. The user
can employ this program to perform the following functions:

0O Make changes in the object code.

O Examine and modify the contents of memory.

O Set breakpoints, execute a segment of the program, and display register contents after
the execution.

O Trace the execution of the specified segment of the program, and display the register
and memory contents after the execution of each instruction.

0 Disassemble a section of the program; i.e., convert the object code into the source code

Or mnemonics.

Explain the steps of 8085 microprocessor interrupt process.

Step 1: The interrupt process should be enabled by wriling the instruction El in the
main program. This is similar to keeping the phone receiver on the hook. The
instruction El sets the Interrupt Enable flip-flop. The instruction DI resets the
flip-flop and disables the interrupt process.

Instruction El (Enable Interrupt)

[J This is a 1-byle instruction.

] The instruction sets the Interrupt Enable flip-flop and enables the interrupt
process.

1 System reset or an interrupt disables the interrupt process.

Instruction DI (Disable Interrupt)

0 This is a 1-byte instruction.

0 The instruction resets the Interrupt Enable flip-flop and disables the interrupt.

O It should be included in a program segment where an interrupt from an out-
side source cannot be tolerated.

Step 2: When the microprocessor is executling a program, il checks the INTR line dur-
ing the execution of each instruction.

Step 3: If the line INTR is high and the interrupt is enabled, the microprocessor com-
pletes the current instruction, disables the Interrupt Enable flip-flop and sends a
signal called INTA—Interrupt Acknowledge (active low). The processor cannot
accept any interrupt requests until the interrupt Aip-flop is enabled again.

Step 4: The signal INTA is used to insert a restart (RST) instruction (or a Call instruc-
tion) through external hardware. The RST instruction is a l-byte call instruc-
tion (explained below) that transfers the program control to a specific memory
location on page O0OH and restarts the execution at that memory location after
executing Step 5.

Step 5: When the microprocessor receives an RST instruction (or a Call instruction), it
saves the memory address of the next instruction on the stack. This is similar to
inserting a bookmark. The program is transferred to the CALL location.

Step 6: Assuming that the task to be performed is written as a subroutine at the speci-
fied location, the processor performs the task. This subroutine is known as a

service routine.

Step 7: The service routine should include the instruction El to enable the interrupt
again. This is similar to putting the receiver back on the hook.

Step 8: At the end of the subroutine, the RET instruction retrieves the memory address
where the program was interrupted and continues the execution. This is similar

Write a short not on 8085 microprocessor vectored interrupts.

The 8085 has five interrupt inputs (Figure 12.5). One is called INTR (discussed in the pre-
vious section), three are called RST 5.5, 6.5, and 7.5, respectively, and the fifth is called
TRAP, a nonmaskable interrupt. These last four (RSTs and TRAP) are automatically vec-
tored (transferred) to specific locations on memory page OOH without any external hard-
ware. They do not require the INTA signal or an input port; the necessary hardware is al-
ready implemented inside the 8085. These interrupts and their call locations are as follows:

Interrupts Call Locations
1. TRAP — 0024H
Zz. RST 7.5 —_— > 003CH
3. RST 6.5 > 0034H
4. RST 5.5 — 002CH

The TRAP has the highest priority, followed by RST 7.5, 6.5, 5.5, and INTR, in that
order: however, the TRAP has a lower priority than the Hold signal used for DMA

Attempt any three of the following:

15

Explain the internal structure of the Pentium Pro Processor.

L
ersian o Fa S P
rar_ma
¥ — =
= -
[1
|
Tt LW T
1
= nar
e =] el |
= s
| T e
[
- S |
2 [T
5 o Comin) e—
Tactm
/TR L = J
- = - -
T
| 1
-k
= - | - 5
| i |
e
-
S
e
_'-r
|
L
[Ty W

The Pentium Pro is structured differently than earlier microprocessors. Early microprocessors
contained an execution unit and a bus interface unit with a small cache buffering the execution
unit for the bus interface unit. This structure was modified in later microprocessors, but the
modifications were just additional stages within the microprocessors. The Pentium architecture is
also a modification, but more significant than earlier microprocessors. Figure shows a

block diagram of the internal structure of the Pentium Pro microprocessor.

The system buses, which communicate to the memory and I/O, connect to an internal level

2 cache that is often on the main board in most other microprocessor systems. The level 2 cache
in the Pentium Pro is either 256K bytes or 512K bytes. The integration of the level 2 cache
speeds processing and reduces the number of components in a system.

The bus interface unit (BIU) controls the access to the system buses through the level 2

cache, as it does in most other microprocessors. Again, the difference is that the level 2 cache is
integrated. The BIU generates the memory address and control signals, and passes and fetches
data or instructions to either a level 1 data cache or a level 1 instruction cache. Each cache is 8K
bytes in size at present and may be made larger in future versions of the microprocessor. Earlier
versions of the Intel microprocessor contained a unified cache that held both instructions and
data. The implementation of separate caches improves performance because data-intensive
programs

no longer fill the cache with data.

List any five Pentium instructions and explain the function of any two.
Instruction Function

CMPXCHGSB Compare and exchange eight bytes
CPUID Return CPU identification code

RDTSC Read time-stamp counter

RDMSR Read model-specific register

WRMSR Write model-specific register

RSM Return from system management interrupt

The CMPXCHGSB instruction is an extension of the CMPXCHG instruction added to the

80486 instruction set. The CMPXCHGSB instruction compares the 64-bit number stored in
EDX and EAX with the contents of a 64-bit memory location or register pair. For example, the
CMPXCHGSB DATA: instruction compared the eight bytes stored in memory location DATA2
with the 64-bit number in EDX and EAX. If DATA2 equals EDX:EAX, the 64-bit number stored
in ECX:EBX is stored in memory location DATA2. If they are not equal, the contents of DATA2
are stored into EDX:EAX. Note that the zero flag bit indicates that the contents of EDX:EAX
were equal or not equal to DATA2.

The CPUID instruction reads the CPU identification code and other information from

the Pentium. To use the CPUID instruction, first load EAX with the input value

and then execute CPUID. If a 0 is placed in EAX before executing the CPUID instruction, the
microprocessor returns

the vendor identification in EBX, EDX, and EBX. For example, the Intel Pentium
returns“Genuinelntel” in ASCII code with the “Genu” in the EBX, “inel’ in EDX, and “ntel” in
ECX. TheEDX register returns information if EAX is loaded with a 1 before executing the CPUID
instruction.

The RDTSC instruction reads the time-stamp counter into EDX:EAX. The time-stamp

counter counts CPU clocks from the time the microprocessor is reset, where the time-stamp counter
is initialized to an unknown count. Because this is a 64-bit count, a | GHz microprocessor can
accumulate a count of over 580 years before the time-stamp counter rolls over. This instruction
functions only in real mode or privilege level 0 in protected mode.

The RDMSR and WRMSR instructions allow the model-specific registers to be read or

written. The model-specific registers are unique to the Pentium and are used to trace, check
performance, test, and check for machine errors. Both instructions use ECX to convey the register
number to the microprocessor and use EDX:EAX for the 64-bit-wide read or write. Note that the
register addresses are 0H—13H. See Table 18-5 for a list of the Pentium model-specific registers and
their contents. As with the RDTSC instruction, these model-specific registers operate in the

real or privilege level 0 of protected mode.

Explain the CPUID instruction in Pentium II.

CPUID Instruction

Table below lists the values passed between the Pentium II and the CPUID instruction. These are
changed from earlier versions of the Pentium microprocessor. The version information returned
after executing the CPUID instruction with a logic 0 in EAX is returned in EAX. The family ID is
returned in bits 8 to 11; the model ID is returned in bits 4 to 7. The stepping ID is returned in bits 0
to 3. For the Pentium II, the model number is 6 and the family ID is a 3. The stepping number refers
to an update number—the higher the stepping

number, the newer the version. The features are indicated in the EDX register after executing the
CPUID instruction with a zero in EAX. Only two new features are returned in EDX for the Pentium
II. Bit position 11

indicates whether the microprocessor supports the two new fast call instructions, SYSENTER and
SYSEXIT. Bit position 23 indicates whether the microprocessor supports the MMX instruction set.
Bit 16 indicates whether the microprocessor supports the page attribute table or PAT. Bit 17
indicates whether the microprocessor supports the page size

TABLE CPUID instruction for the Pentium II.

Input EAX Output Register Contents

0 EAX Maximum allowed input to EAX for CPUID

EBX “uneG”

ECX “Inei”

EDX “letn”

EAX Version number

EDX Feature information

EAX Cache data

EBX Cache data

ECX Cache data

EDX Cache data

DN == OO0

Extension found with the Pentium Pro and Pentium II microprocessors. The page size extension
allows memory above 4G through 64G to be addressed. Finally, bit 24 indicates whether the fast
floating-point save (FXSAVE) and restore (FXRSTOR) instructions are implemented.

Compare Core i3, 15 and 17 processors.

Core i3 Pentium

Codename Lynnfield Lynnfield Clarkdale Clarkdale Clarkdale
Cores 4 4 2 2 2
Hyper-Threading Yes MNo Yes Yes Mo
support
Clock frequencies 2.8-2.93 GHz 2.66 GHz 3.20-3.46 GHz 2.93-3.06 GHz 2.80GHz
L3 cache & MB & MB 4 MB 4 MB 3 MB
Graphics core Mo Mo Yes Yes Yes
Turbo Boost Yes Yes Yes Mo Mo
Max. memory DDR3-
DDR3-1600 DDR3-1333 DDR3-1333 DDR3-1333
frequency 1067
TDFP 95 W 95 W 73-BT W 3w 73W
Price 5284-5562 5196 5176-5284 5113-5133 587

.| What are the features of the SPARC Architecture?

SPARC includes the following principal features:

e A linear, 32-bit address space.

e Few and simple instruction formats — All instructions are 32 bits wide, and
are aligned on 32-bit boundaries in memory. There are only three basic
instruction formats, and they feature uniform placement of opcode and register
address fields. Only load and store instructions access memory and I/O.

o Few addressing modes — A memory address is given by either “register +
register” or “register+immediate.”

e Triadic register addresses— Most instructions operate on two register
operands (or one register and a constant), and place the result in a third
register.

e A large “windowed” register file — At any one instant, a program sees 8
global integer registers plus a 24-register window into a larger register file.

e The windowed registers can be described as a cache of procedure arguments,
local values, and return addresses.

e A separate floating-point register file — configurable by software into 32
single-precision (32-bit), 16 double-precision (64-bit), 8 quad-precision
registers (128-bit), or a mixture thereof.

e Delayed control transfer— The processor always fetches the next instruction
after a delayed control-transfer instruction. It either executes it or not,
depending on the control-transfer instruction’s “annul” bit.

e Fast trap handlers— Traps are vectored through a table, and cause allocation
of a fresh register window in the register file.

e Tagged instructions — The tagged add/subtract instructions assume that the
two least-significant bits of the operands are tag bits.

What are the various data format in the SPARC Architecture?

The SPARC architecture recognizes three fundamental data formats (or types):
.Signed Integer— 8, 16, 32, and 64 bits

.Unsigned Integer— 8§, 16, 32, and 64 bits

.Floating-Point — 32, 64, and 128 bits

The format widths are defined as:

.Byte — 8 bits

.Halfword— 16 bits

.Word/Singleword — 32 bits

.Tagged Word— 32 bits (30-bit value plus 2 tag bits)

.Doubleword— 64 bits

.Quadword— 128 bits

The Signed Integer formats encode two’s-complement whole numbers. The
Unsigned Integer formats are general-purpose in that they do not encode any particular
data type; they can represent a whole number, string, fraction, boolean

value, etc. The Floating-Point formats conform to the IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985. The Tagged formats
define a word in which the least-significant two bits are treated as tag bits.

